
An Approach to Generating and Verifying Complex Scripts and Procedures

James L. Rash, Michael G. Hinchey
NASA Goddard Space Flight Center

Information Systems Division
Greenbelt, MD 20771, USA

{james.l.rash, michael.g.hinchey}@nasa.gov

Denis Gračanin
Department of Computer Science

Virginia Tech
Blacksburg, VA 24061, USA

gracanin@vt.edu

Christopher A. Rouff
SAIC

Advanced Concepts Business Unit
McLean, VA 22102, USA

rouffc@saic.com

Abstract

Currently available tools and methods for system devel-
opment that start with a formal model of a system and me-
chanically produce a provably equivalent implementation
are valuable but not sufficient. The “gap” that such tools
and methods leave unfilled is that the formal models can-
not be proven to be equivalent to the system requirements
as originated by the customer. For the classes of complex
systems whose behavior can be described as a finite (but
significant) set of scenarios, we offer a method for mechani-
cally transforming requirements expressed in restricted nat-
ural language, or appropriate graphical notations, into a
provably equivalent formal model that can be used as the
basis for code generation and other transformations. The
same approach may be applied to address computer sci-
ence aspects of bioinformatics problems. Many software
tools for bioinformatics have been developed using script-
ing languages such as Perl and Python. Scripts are devel-
oped based on a set of requirements that can be expressed
using English-like statements. Using our approach, these
may be used to automatically generate and validate scripts
rather than write them from scratch.

1 Introduction

Scripting languages, such as Perl and Python, enable
scientists, often with limited backgrounds in computer
programming, to quickly develop impressive applications,
combining several pre-existing programs and databases [9].

Toolkits such as Bioperl [35] and Biopython [8] provide
off-the-shelf software components that can quickly be com-
bined and used in user-defined scripts.

This has, undoubtedly, greatly contributed to the surge
in Bioinformatics research, and the recent advances of the
Bioinformatics industry, by enabling scientists to be directly
involved in the development of software that searches com-
plex databases for particular patterns, or patterns with par-
ticular characteristics.

But software, even software that may seem quite short
and simple, is far more complex than we might expect [6,
15, 37], and continues to lag behind hardware in terms of
advances in reliability, performance, and cost of owner-
ship [36]. The advantages brought about by advances in
software tools (flexibility, speed of implementation, etc.)
simultaneously brings significant disadvantages, namely a
lack of quality assurance: patches and additions to public
codebases may be widely available, but the accuracy, cor-
rectness, and quality of such open source code may be sus-
pect.

2 Software Quality and Assurance Issues

2.1 Background

Software quality remains a major issue for the software
engineering community. Best practice holds that we apply
various proven techniques to ensure that software is safe,
reliable, maintainable, and well-documented.

Notwithstanding, there have been a number of high-
profile software failures. Examples include:

• The Mars Polar Lander, where failure to initialize a
variable resulted in the craft crash landing on the Mar-
tian surface, instead of reverse thrusting and landing
softly [4].

• Ariane 5, where it was assumed that the same launch
software used in the prior version (Ariane 4) could be
reused. The result was the loss of the rocket within
seconds of launch [26].

• In the medical domain, in the mid-1980s, the Therac-
25 computerized radiation therapy machine caused
death and serious injuries by administering lethal
doses of radiation to patients in what has been de-
scribed as the worst series of radiation accidents in the
history of medical accelerators [30].

2.2 The Therac-25 incidents

The Therac-25 incidents are an interesting and relevant
example of, arguably, the most significant failure of soft-
ware assurance in the medical/biological field.

Therac-25 was a dual-mode linear accelerator that could
deliver either photons at 25 MeV or electrons at various en-
ergy levels. It was based on Therac-20, which in turn was
based on the single-mode Therac-6. While Therac-20 in-
cluded hardware interlocks for safety, in Therac-25 these
were software-based. Despite several Therac-25 machines
operating, reportedly correctly, for up to four years at var-
ious installations in the US, six incidents occurred where
the device gave massive (and lethal) doses of radiation to
patients.

Subsequent investigations discovered that “creative” set-
ting of parameters by students at a radiology school regu-
larly resulted in Therac-20 machines shutting down due to
blown fuses and breakers. In fact, it transpired that Therac-
20 incorporated the same software error as Therac-25, but
what was merely a nuisance in Therac-20 (due to mechani-
cal interlocks) was a fatal problem with Therac-25 [25]. The
problem was “inherited” and exacerbated in Therac-25.

2.3 Bioinformatics and software quality

In 2002, the National Institute of Standards & Technol-
ogy (NIST) estimated that economic losses due to poor soft-
ware quality amounted to more than US$60 billion. The
FDA [37] estimates that, between 1992 and 1998, 7.7% of
medical device recalls were due to software failures.

Factors that non-specialist developers of software often
fail to consider include [37]:

• Even very short programs can be complex and difficult
to understand, due to branching.

• Software does not deteriorate with age. In fact, it may
be improved over time by the discovery and correction
of latent errors. However, new defects may be intro-
duced during changes to software.

• Seemingly insignificant changes in software can result
in significant and unexpected problems in other (seem-
ingly unrelated) parts of the code.

• While some hardware can give forewarnings of failure,
this is not the case with software. Many latent errors
in software may not be visible until long after the soft-
ware has been deployed.

• A characteristic of software is the speed and ease with
which it can be changed. This may give the incorrect
impression that software errors can easily be found and
corrected.

• Testing must be augmented with other verification
techniques, and a structured and well-documented de-
velopment approach must be combined to ensure a
comprehensive validation approach.

The FDA concludes [37]: “Because of its complexity,
the development process for software should be even more
tightly controlled than for hardware, in order to prevent
problems that cannot be easily detected later in the devel-
opment process”, and that “time is needed to fully define
and develop reusable software code and to fully understand
the behavior of off-the-shelf components.”

Clearly this is not the current trend in the Bioinformatics
industry, where scientists are developing scripts that are not
validated, and reusing open source components that may
or may not have been tested and verified. A “significant
amount of software for life-critical systems comes from
small firms, especially in the medical device industry; firms
that fit the profile of those resistant to or uninformed of
the principles of either system safety or software engineer-
ing.” [18].1

We cannot assume that scripts and seemingly simple
software is correct, without the application of state-of-the-
art techniques for software safety. In fact, the European
Union’s Machine Safety Directive 98/37/EC requires devel-
opers to demonstrate the use of such techniques, or suffer
criminal liability [5].

The application of software validation techniques to
Bioperl [38] is attempting to provide an ongoing, system-
atic testing of Bioperl, with patches and validated new code
being added to the public codebase. The goal is to estab-
lish user confidence that software components will work as
described.

1This quotation from Frank Houston of the FDA predates the surge in
the Bioinformatics industry; but Houston’s criticism of the medical devices
industry may equally well be applied to current trends in the Bioinformat-
ics industry.

3 Automatic Generation of Scripts and Pro-
cedures

Automatic code generation from requirements has been
the ultimate objective of software engineering almost since
the advent of high-level programming languages [28]. The
intent is that automating the generation of code can re-
duce development lead-times and costs, significantly reduce
common programming errors, or bugs, and facilitate the
speedy and cost-effective generation of multiple software
implementations for different platforms.

While automatic programming has been maligned in the
past [6], the need for “requirements-based programming”,
or RBP, whereby requirements can be transformed into an
implementation in a manner that supports the entire lifecy-
cle of the development process, cannot be exaggerated [11].
The Bioinformatics industry can similarly exploit the bene-
fits of such an approach in the automatic generation of com-
plex scripts and procedures.

Scripts and/or procedures in the Bioinformatics domain
are developed based on a set of requirements. These are
likely to be expressed as statements in natural language
(such as English). Rather than writing scripts from scratch,
requirements-based programming techniques [13, 29] may
be used to automatically generate and validate these scripts.
In [28], we describe how the approach may be used to gen-
erate and validate complex procedures (for the robotics do-
main); a similar approach may be applied in the biological
domain for the validation of complex laboratory procedures.
In the remainder of this paper, we will concentrate on the
generation and validation of scripts.

3.1 RBP vs. Automatic Programming

Automatic Programming requires the developer to rep-
resent the system to be implemented as a formal model that
can be proven to be correct. Through the use of currently
available tools, the model can then be automatically trans-
formed into code with minimal, or no, human intervention
and with a correspondingly minimized chance of introduc-
ing errors. Being able to automatically produce the for-
mal model from customer requirements further reduces the
chance of introduction of errors by developers and results
in highly dependable complex systems. This is the goal of
requirements-based programming.

We will not critique currently available system devel-
opment tools and methods that are based on formal mod-
els here; but, to the best of our knowledge, they provide
neither automated generation of the models from require-
ments nor automated proof of correctness of the models.
Therefore, currently there is no automated means of pro-
ducing a system—or script, or complex procedure—that is a
provably correct implementation of the customer’s require-

ments. Further, requirements engineering as a discipline
has yet to produce an automated, mathematics-based pro-
cess for requirements validation.

Several tools and products exist in the marketplace to
automate code generation from a given model expressed
in a particular notation. However, typically the code they
generate includes portions that either are never executed
or cannot be justified from either the requirements or the
model. Moreover, existing tools do not and cannot over-
come the fundamental inadequacy of all currently available
automated development approaches, which is that they in-
clude no means to establish a provable equivalence between
the requirements stated at the outset and either the model or
the code they generate.

Traditional approaches to automatic code generation pre-
suppose the existence of an explicit (formal) model of real-
ity that can be used as the basis for subsequent code genera-
tion. While such an approach is reasonable, the advantages
and disadvantages of the various modeling approaches used
in computing are well known and certain models can serve
well to highlight certain issues while suppressing other less
relevant details [27]. It is clear that the converse is also true.
Certain models of reality, while successfully detailing many
of the issues of interest to developers, can fail to capture
some important issues, or perhaps even the most important
issues.

3.2 Our Approach

Without a formal specification of the system under con-
sideration, there is no possibility of determining any level
of confidence in the correctness of an implementation of a
complex system. The formal specification must fully, com-
pletely, and consistently capture the requirements set out.
Clearly, we cannot expect requirements to be perfect, com-
plete, and consistent from the outset, which is why it is
even more important to have a formal specification, through
which errors, omissions, and conflicts can be identified. The
formal specification must also reflect changes and updates
from system maintenance as well as changes and compro-
mises in requirements, so that it remains an accurate repre-
sentation of the system throughout the lifecycle.

The Requirements-to-Design-to-Code (R2D2C) method
described in this paper is unique in that it allows for full
formal development from the outset, and maintains math-
ematical soundness through all phases of the development
process, from requirements through to automatic code gen-
eration. In this approach, engineers (or others) may express
system requirements as scenarios in constrained (domain-
specific) natural language, or in a range of other notations
(including Unified Modeling Language (UML) use cases).
These will be used to derive a formal model that is guaran-
teed to be equivalent to the requirements stated at the outset,

and that will subsequently be used as a basis for code gen-
eration. The formal model can be expressed using a variety
of formal methods. Currently we are using CSP, Hoare’s
language of Communicating Sequential Processes [16, 17],
which is suitable for various types of analysis and investi-
gation, and as the basis for fully formal implementations as
well as automated test-case generation, etc.

The approach may be used to reverse engineer systems
(that is, to retrieve models and formal specifications from
existing code), and to “paraphrase” (in natural language,
etc.) formal descriptions of existing systems. Not limited
to generating high-level code, it may also be used to gener-
ate business processes and procedures, and we are currently
experimenting with using it to generate scripts for Bioinfor-
matics tools (see Section 5).

4 Requirements to Design to Code

4.1 R2D2C Method

The R2D2C approach involves a number of phases,
which are reflected in the system architecture shown in Fig-
ure 1. The following describes each of these phases.

D1 Scenarios Capture: End users, and others, write sce-
narios describing intended system operation. The in-
put scenarios may be represented in a constrained nat-
ural language using a syntax-directed editor, or may be
represented in other textual or graphical forms.

D2 Traces Generator: Traces and sequences of atomic
events are derived from the scenarios defined in D1.

D3 Model Inference: A formal model, or formal specifica-
tion expressed in CSP is inferred by an automatic theo-
rem prover—in this case, ACL2 [20]—using the traces
derived in D2. A deep2 embedding of the laws of con-
currency [12] in the theorem prover gives it sufficient
knowledge of concurrency and of CSP to perform the
inference. The embedding will be the topic of a future
paper.

D4 Analysis: Based on the formal model, various analyses
can be performed using currently available commer-
cial or public domain tools and specialized tools that
are planned for development. Because of the nature
of CSP, the model may be analyzed at different levels
of abstraction using a variety of possible implementa-
tion environments. This will be the subject of a future
paper.

2“Deep” in the sense that the embedding is semantic rather than merely
syntactic.

D5 Code Generator: The techniques of automatic code
generation from a suitable model are reasonably well
understood. The present modeling approach is suitable
for the application of existing code generation tech-
niques, whether using a tool specifically developed for
the purpose, or existing tools such as FDR [3], or con-
verting to other notations suitable for code generation
(e.g., converting CSP to B [7]) and then using the code
generating capabilities of the B Toolkit.

It should be re-emphasized that the “code” that is gen-
erated may be code in a high-level programming lan-
guage, scripts in a language such as Perl or Python, low-
level instructions for (electro-) mechanical devices, natural-
language business procedures and instructions, or the like.

Paraphrasing, whereby more understandable descrip-
tions (above and beyond existing documentation) of exist-
ing systems or scripts are extracted, is likely to have useful
application in future system maintenance where the origi-
nal design documents have been lost or modified so much
that the original design and requirements documents do not
reflect the current system. In particular, it may prove use-
ful in determining the actual functionality of scripts, which
typically have very little documentation.

It is intended that the approach not only can be used
to generate new scripts, but also (in “reverse engineering
mode”) can be used to provide verification and validation of
existing scripts. Moreover, it can be used to combine exist-
ing scripts, which have been reverse-engineered to a formal
model, combined with other formal models (and checked
for consistency and compatibility), and then efficiently re-
generated as a new script.

4.2 R2D2C Implementation

The current R2D2C implementation translates the CSP
model into Java code [10]; the derived design is transformed
into an equivalent software representation. The Java pro-
gramming language was selected both for tool implementa-
tion and for the target platform for the following reasons.

• Java is a general-purpose concurrent class-based
object-oriented programming language, with very few
implementation and hardware dependencies.

• An off-the-shelf implementation (library) of CSP for
Java [2] is available. While it does not provide direct
CSP-to-Java mapping, it conforms to the CSP model
of communicating systems for Java multi-threaded ap-
plications [23]. There is also support for distributed
JCSP components using JCSP.net [40].

• Java Swing [39], in combination with some Java IDEs,
greatly simplifies user interface development.

Figure 1. The R2D2C method.

• Availability of many Java-based translator develop-
ment tools.

The translators are implemented using the ANTLR [1]
tool, which provides a framework for constructing recogniz-
ers, compilers, and translators from grammatical descrip-
tions. A discussion of ANTLR and some related tools can
be found in [34].

A planned front-end tool, a scenario editor, will sup-
port this process. An additional planned tool will enable
an automated translation of constraints and restrictions into
a propositional form that can be subjected to formal proof
based on the CSP model. Appropriate algorithms will be
developed to analyze properties of distributed systems that
use a CSP-like communication infrastructure [19]. CSP
models for a specific programming language or scripting
language implementation further increase modeling capa-
bilities (e.g., for Java [41]).

5 Bioinformatics Related Example: Bioperl

5.1 Background

Finding patterns in biological sequences has a goal of
identifying parts that have a biological meaning [21, 22, 24].
There are several approaches to this problem. One such ap-
proach is based on the use of grammar and parsing. Ideally,
one would use a grammar defining a gene or expressing pro-
tein folds. However, it is questionable as to whether such
grammars are feasible. Some generic grammars describing
the syntax of genes can be defined using certain grammar
rules and patterns. Such grammars are usually very am-
biguous and, while describing a gene structure, cannot be
used to construct a sequence parser. Instead, there are many
tools and programs that provide ready-made functionality
for sequence manipulation, database access, invocation of

molecular biology programs (e.g. Blast, clustalw, TCoffee,
genscan, ESTscan, HMMER), and processing of the results.

Bioperl [35] provides a collection of perl modules used
for the development of perl scripts for use in Bioinformatics
applications. It also allows the development of scripts to an-
alyze large quantities of sequence data. The user of Bioperl
needs to have a basic understanding of the Perl program-
ming language concepts. Very often these concepts are not
well-known to an average user, who then needs to learn ba-
sic programming constructs quickly in order to write simple
Perl scripts to perform tasks such as:

• Accessing sequence data from local and remote
databases.

• Transforming database/file record formats.

• Manipulating sequences.

• Searching for similar sequences.

• Manipulating sequence alignments.

• Searching for genes and other structures on genomic
DNA.

• Developing machine readable sequence annotations.

• Manipulating clusters of sequences.

• Representing non-sequence data.

• Graphically representing sequences;

• Using sequence alphabets.

Start sends enabled.

GeneOne receives enabled then sends gone.

ProteinOne receives gone then sends cone.

GeneTwo sends gtwo.

ProteinTwo receives gtwo then sends ctwo.

GeneOne receives ctwo then sends enabled.

Figure 2. R2D2C input scenario.

5.2 From scenarios to CSP

Let us consider an example from [9] (pp. 146–147). The
problem is described in the form of a scenario. The scenario
states [9]:

• Gene GeneOne produces protein ProteinOne in t1
units of time; ProteinOne dissipates in time u1 and
triggers condition cone.

• Gene GeneTwo produces protein ProteinTwo in t2
units of time; ProteinTwo dissipates in time u2 and
triggers condition ctwo.

• Once produced, ProteinTwo positions itself
in GeneOne for u2 units of time preventing
ProteinOne from being produced.

The scenario represents a process that is expressed and
implemented using a Perl script. However, it is also pos-
sible to express this scenario using a formal model based
on CSP [16, 17]. GeneOne, ProteinOne, GeneTwo,
ProteinTwo can be considered as separate processes
with timing constraints implicitly included. (Timing con-
straints may be explicitly handled by using Timed CSP, a
timed variant of CSP which extends the semantics of CSP
with time [31, 32, 33].) The implicit pre-condition that
GeneOne must be enabled is handled by the Start pro-
cess. The events and conditions describing protein produc-
tion are represented as messages gone, cone, gtwo, ctwo,
and enabled. The resulting R2D2C input scenario is shown
in Figure 2.

Constraints currently incorporated into the prototype
R2D2C tool are at this stage minimal in number, but serve to
demonstrate the potential of the R2D2C method for Bioin-
formatics scripts. Figure 3 shows the input (scenario), while
Figures 4 and 5 show the corresponding CSP formal model.

In essence, the corresponding CSP model consists of five
CSP processes that capture input requirements. The anal-
ysis of the CSP model can detect a deadlock (the script is

Figure 3. The R2D2C input entry.

Figure 4. The R2D2C CSP output.

blocked waiting for input) or a livelock (an endless looping)
that should then be used to revise the requirements before
developing the Bioperl code.

A frequent mistake in implementing these requirements
is omission of constraints, either due to their “implicit”
presence in the requirements, or due to errors in code de-
velopment [9]. For example, consider the following re-
vised version of the R2D2C input entry created by omitting
Start sends enabled. (Figure 6).

In this case, nothing prevents GeneOne from constantly
generating ProteinOne and ignoring ProteinTwo inhibi-
tion.

The application of the prototype R2D2C tool to the ex-
ample described above shows the potential benefit of an au-
tomated, mathematically-sound method for verifying Bioin-
formatics scripts. If the input requirements are not consis-
tent or have problems (e.g., the corresponding CSP model
has occurrences of deadlock or livelock), the corresponding

channel cone, ctwo, enabled, gone, gtwo : T ;
Start = enabled ! 0 -> Start ;
GeneOne = enabled ? x -> gone ! 0

-> GeneOne ;
ProteinOne = gone ? x -> cone ! 0

-> ProteinOne ;
GeneTwo = gtwo ! 0 -> GeneTwo ;
ProteinTwo = gtwo ? x -> ctwo ! 0

-> ProteinTwo ;
GeneOne = ctwo ? x -> enabled ! 0

-> GeneOne ;
System =

GeneOne [| {| |} |]
GeneTwo [| {| |} |]
ProteinOne [| {| |} |]
ProteinTwo [| {| |} |]
Start ;

Figure 5. R2D2C CSP code.

GeneOne sends gone.

ProteinOne receives gone then sends cone.

GeneTwo sends gtwo.

ProteinTwo receives gtwo then sends ctwo.

GeneOne receives ctwo then sends enabled.

Figure 6. Revised input scenario.

Bioperl scripts are likely to have the same problems (unless
the error is detected by the person coding the scripts).

5.3 From CSP to Perl

Converting from CSP to Perl can be implemented using
threads. In the Perl interpreter thread model (ithreads), in-
troduced in Perl 5.6.0, each thread runs in its own Perl in-
terpreter. Any data sharing between threads is explicit using
queues, special thread-safe objects.

A CSP channel is implemented as a queue (Figure 7)
while CSP process channel communication is implemented
by enqueueing and dequeueing the corresponding channel
queues (Figure 8).

While the generated code is rather lengthy, it does guar-
antee the correct implementation of the requirements.

use threads;
use Thread::Queue;

my $enabledQueue = Thread::Queue->new;
my $coneQueue = Thread::Queue->new;
my $ctwoQueue = Thread::Queue->new;
my $goneQueue = Thread::Queue->new;
my $gtwoQueue = Thread::Queue->new;
......

Figure 7. Perl CSP channel code.

......
$GeneOne = threads->new(sub {

while ($DataElement =
$enabledQueue->dequeue) {

...
$goneQueue->enqueue("gone");

}
});

......
$GeneOne->join;

Figure 8. Perl CSP process code.

6 Conclusions and Future Work

R2D2C is a unique approach to the automatic derivation
of complex systems. It is unique in that it supports fully
(mathematically) tractable development from requirements
elicitation through to automatic code generation (and back
again). While other approaches have supported various sub-
sets of the development lifecycle, there has been hereto-
fore a “jump” in deriving from the requirements the formal
model that is a prerequisite for sound automatic code gen-
eration. Yet, R2D2C is a simple approach, combining tech-
niques and notations that are well understood, well tried and
tested, and trusted.

We have previously experimented with applying the
approach in the automated development and post-
implementation verification and validation of wireless sen-
sor networks [14] and complex procedures for robotics [28].
The results have been extremely encouraging. Currently we
are investigating applying the approach to the verification
of expert systems, and complex scripts for spacecraft oper-
ation.

It is our contention that R2D2C, and other approaches
that similarly provide mathematical soundness throughout
the development lifecycle will be of benefit in the genera-
tion and verification of scripts. It will:

• dramatically increase quality assurance of scripts,

• ensure that scripts are true to the requirements,

• ensure that automatically-coded scripts are bug-free,
and

• decrease costs and schedule impacts in the Bioinfor-
matics domain.

Acknowledgements

This work was encouraged and funded in part by NASA
Goddard Space Flight Center (GSFC) Information Systems
Division and the GSFC Technology Transfer Office. We
are grateful to Joe Hennessy, Ted Mecum, Nona Cheeks,
Chris Kirkman, Diana Cox, Yvette Conwell-Brown, and
Keith Dixon for their support and encouragement. John Er-
ickson (University of Texas at Austin) worked with us and
provided invaluable expertise on the prototype R2D2C envi-
ronment. The approach described in this paper is protected
under United States and International Patent Applications
assigned to the United States government.

References

[1] ANTLR: ANother Tool for Language Recognition.
http://www.antlr.org/.

[2] Communicating sequential processes for Java (JCSP).
http://www.cs.kent.ac.uk/projects/ofa/jcsp/.

[3] Failures-Divergences Refinement: User Manual and Tuto-
rial. Formal Systems (Europe), Ltd., 1999.

[4] Report on the Loss of the Mars Polar Lander and Deep Space
2. Report by the JPL Special Review Board, Pasadena, Cal-
ifornia, USA, March 2000.

[5] J. P. Bowen and M. G. Hinchey. Formal methods and safety-
critical standards. IEEE Computer, 27(8):68–71, Aug. 1994.

[6] F. P. Brooks, Jr. No silver bullet: Essence and accidents of
software engineering. IEEE Computer, 20(4):10–19, April
1987.

[7] M. J. Butler. csp2B : A Practical Approach To Combining
CSP and B. Declarative Systems and Software Engineering
Group, Department of Electronics and Computer Science,
University of Southampton, February 1999.

[8] B. Chapman and J. Chang. Biopython: Python tools for
computational biology. SIGBIO Newsl., 20(2):15–19, 2000.

[9] J. Cohen. Bioinformatics—an introduction for computer sci-
entists. ACM Comput. Surv., 36(2):122–158, 2004.

[10] J. Gosling, B. Joy, G. Steele, and G. Bracha. JavaTM Lan-
guage Specification. Addison Wesley, Boston, second edi-
tion, 2000.

[11] D. Harel. Comments made during presentation at “Formal
Approaches to Complex Software Systems” panel session.
ISoLA-04 First International Conference on Leveraging Ap-
plications of Formal Methods, Paphos, Cyprus. 31 October
2004.

[12] M. G. Hinchey and S. A. Jarvis. Concurrent Systems: For-
mal Development in CSP. International Series in Soft-
ware Engineering. McGraw-Hill International, London, UK,
1995.

[13] M. G. Hinchey, J. L. Rash, and C. A. Rouff. A formal ap-
proach to requirements-based programming. In Proc. IEEE
International Conference and Workshop on the Engineering
of Computer Based Systems (ECBS 2005). IEEE Computer
Society Press, Los Alamitos, Calif., 3–8 April 2005.

[14] M. G. Hinchey, J. L. Rash, and C. A. Rouff. Towards an au-
tomated development methodology for dependable systems
with application to sensor networks. In Proc. IEEE Work-
shop on Information Assurance in Wireless Sensor Networks
(WSNIA 2005), Proc. International Performance Comput-
ing and Communications Conference (IPCCC-05), Phoenix,
Arizona, 7–9 April 2005. IEEE Computer Society Press, Los
Alamitos, Calif.

[15] M. G. Hinchey, J. L. Rash, W. F. Truszkowski, C. A. Rouff,
and R. Sterritt. You can’t get there from here! Problems
and potential solutions in developing new classes of com-
plex systems. In Proc. Eighth International Conference on
Integrated Design and Process Technology (IDPT), Beijing,
China, 13–17 June 2005. The Society for Design and Pro-
cess Science.

[16] C. A. R. Hoare. Communicating sequential processes. Com-
munications of the ACM, 21(8):666–677, 1978.

[17] C. A. R. Hoare. Communicating Sequential Processes. Pren-
tice Hall International Series in Computer Science. Prentice
Hall International, Englewood Cliffs, NJ, 1985.

[18] F. Houston. What do the simple folk do?: Software safety in
the cottage industry. In Proc. IEEE Computers in Medicine
Conference, 1985.

[19] S. T. Huang. A distributed deadlock detection algorithm for
CSP-like communication. ACM Transactions on Program-
ming Languages and Systems, 12(1):102–122, 1990.

[20] M. Kaufmann and Panagiotis Manolios and J Strother
Moore. Computer-Aided Reasoning: An Approach. Ad-
vances in Formal Methods Series. Kluwer Academic Pub-
lishers, Boston, 2000.

[21] D. E. Krane and M. L. Raymer. Fundamental Concepts of
Bioinformatics. Benjamin Cummings, San Francisco, 2003.

[22] S. A. Krawetz and D. D. Womble. Introduction to Bioinfor-
matics: Theoretical and Practical Approach. Humana Press,
Totowa, New Jersey, 2003.

[23] D. Lea. Concurrent Programming in JavaTM : Design Prin-
ciples and Patterns. The JavaTM Series. Addison-Wesley
Professional, Reading, Massachusetts, second edition, 2000.

[24] A. M. Lesk. Introduction to Bioinformatics. Oxford Univer-
sity Press, Oxford, UK, 2002.

[25] N. Leveson and C. S. Turner. An investigation of the Therac-
25 accidents. IEEE Computer, 26(7):18–41, July 1993.

[26] J. L. Lyons. Ariane 5: Flight 501 failure, report by the in-
quiry board, 19 July 1996.

[27] D. L. Parnas. Using mathematical models in the inspection
of critical software. In Applications of Formal Methods, In-
ternational Series in Computer Science, pages 17–31. Pren-
tice Hall, Englewood Cliffs, NJ, 1995.

[28] J. L. Rash, M. G. Hinchey, C. A. Rouff, and D. Gračanin.
Formal requirements-based programming for complex sys-
tems. In Proc. International Conference on Engineering of
Complex Computer Systems, Shanghai, China, 16–20 June
2005. IEEE Computer Society Press, Los Alamitos, Calif.

[29] J. L. Rash, M. G. Hinchey, C. A. Rouff, D. Gračanin, and
J. D. Erickson. Experiences with a requirements-based pro-
gramming approach to the development of a NASA au-
tonomous ground control system. In Proc. IEEE Workshop
on Engineering of Autonomic Systems (EASe 2005) held at
the IEEE International Conference and Workshop on the En-
gineering of Computer Based Systems (ECBS 2005). IEEE
Computer Society Press, Los Alamitos, Calif., 3–8 April
2005.

[30] J. A. Rawlinson. Report on the Therac-25. In OCTRF/OCI
Physicists Meeting, Kingston, Ont., Canada, 7 May 1987.

[31] A. W. Roscoe. The Theory and Practice of Concurrency.
Prentice Hall, Hemel Hempstead, UK, 1997.

[32] S. Schneider. Concurrent and Real-time Systems: The CSP
Approach. Wiley, London, 1999.

[33] S. Schneider, J. Davies, D. M. Jackson, G. M. Reed, J. Reed,
and A. W. Roscoe. Timed CSP: Theory and practice. In
Proc. REX, Real-Time: Theory in Practice Workshop, vol-
ume 600 of LNCS, pages 640–675. Springer-Verlag, 3-7
June 1991.

[34] Y. Smaragdakis, S. S. Huang, and D. Zook. Program genera-
tors and the tools to make them. In PEPM ’04: Proceedings
of the 2004 ACM SIGPLAN Symposium on Partial Evalu-
ation and Semantics-Based Program Manipulation, pages
92–100. ACM Press, 2004.

[35] J. Stajich and E. Birney. The Bioperl project: motivation and
usage. SIGBIO Newsl., 20(2):13–14, 2000.

[36] R. Sterritt and M. G. Hinchey. Why computer based sys-
tems Should be autonomic. In Proc. 12th IEEE Interna-
tional Conference on Engineering of Computer Based Sys-
tems (ECBS 2005), pages 406–414, Greenbelt, MD, April
2005.

[37] U.S. Department of Health and Human Services, Food and
Drug Administration. General principles of software vali-
dation; final guidance for industry and FDA staff, 11 Jan.
2002.

[38] P. van Heusdan. Applying software validation techniques to
Bioperl. In 2004 Bioinformatics Open Source Conference,
Glasgow, UK, 29–30 July 2004. Abstract.

[39] K. Walrath, M. Campione, A. Huml, and S. Zakhour. JFC
Swing Tutorial, The: A Guide to Constructing GUIs. Addi-
son Wesley, Boston, second edition, 2004.

[40] P. H. Welch, J. R. Aldous, and J. Foster. CSP network-
ing for Java (JCSP.net). In Proceedings of the Global and
Collaborative Computing Workshop (ICCS 2002), volume
2330 of Lecture Notes in Computer Science, pages 695–708.
Springer-Verlag, 2002.

[41] P. H. Welch and J. M. R. Martin. A CSP model for Java mul-
tithreading. In Proc. International Symposium on Software
Engineering for Parallel and Distributed Systems, pages
114–122, University of Limerick, Ireland, 10–11 June 2000.

